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6. NILPOTENT GROUPS 
 

§6.1. The Ascending Central Series 
The centre of a group G is 

Z(G) = {z  G | zg = gz for all g  G}. 

We can use this to define a whole series of ‘centres’, 

called the ascending central series. 

 

 W define Zi(G) inductively by defining 

Z0(G) = 1 and 

Zi+1(G)/Zi(G) = Z(G/Zi(G)). 

So Z1(G) = Z(G) and Zi+1(G) = {z  G | [z, g]  Zi(G)} 

for all i  1. 

 

 The ascending central series is thus: 

 

1  Z(G)  Z2(G)  Z3(G)  …… 

 

 We define G to be nilpotent if Zn(G) = G for some 

n, and the smallest such n is called the nilpotency class, 

or just the class. The trivial group is the only nilpotent 

group of class 0 and non-trivial abelian groups are 

nilpotent groups of class 1. 

 

Example 1: The dihedral group of order 8 is nilpotent of 

class 2. 

If G = A, B | A4, B2, [A, B] = A2 we have Z(G) = A2 

and Z2(G) = G. 
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Example 2: Generalizing example 1, 

if G = D2
n+1 = A2n

, B2, [A, B] = A2 

is the dihedral group of order 2n+1 then for r < n, 

Zr(G) = A2
n−r
 and Zn(G) = G. 

Hence G is nilpotent of class n. 

 

Theorem 1: Finite p-groups are nilpotent. 

Proof: Zr+1(G)/Zr(G) = Z(G/Zr(G)). 

Since the centre of a non-trivial p-group is non-trivial, 

Zr(G) < Zr+1(G) unless Zr(G) = G. 

 

Theorem 2: Subgroups and quotient groups of a nilpotent 

group of class n are nilpotent and their nilpotency class is 

at most n. 

 

 

 

 

 

 

 

 

 

 

Proof: 

Suppose Zn(G) = G and let H  G. 

For each r, Zr(H)  Zr(G)  H and so Zn(H) = H. 

Suppose now that H is normal in G. 

For each r, Zr(G)H/H  Zr(G/H) and so Zn(G/H) = G/H. 

POTENT NILPOTENT 
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Theorem 3: 

Let G be a nilpotent group of class n and let H  G. 

Let H0  H1  H2  … be defined by: 

H0 = H, 

Hi+1 = NG(Hi) for all i  0. 

Then Hn = G. 

Proof: 1 = Z0(G)  H0. 

We prove by induction on r that Hr  Zr(G). 

For z  Zr+1(G) and h  Hr, [z, h]  Zr(G) and so 

So z−1h−1z  HrZr(G)  Hr. 

Hence z  NG(Hr) = Hr+1.  Thus Zr+1(G)  Hr+1. 

 

Corollary 1: If G is nilpotent and H < G then H < NG(H). 

Proof: If H = NG(H) then Hr, as defined above, will be 

equal to H for all r. 

 

Corollary 2: Every maximal subgroup of a nilpotent 

group is normal. 

 

Corollary 3: Every maximal subgroup of a nilpotent 

group has finite, prime index. 

Proof: If M is a maximal subgroup then G/M has no 

proper subgroups and so is isomorphic to Cp for some 

prime p. 

 

These two corollaries generalise what we have proved for 

p-groups. 
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Theorem 4: A finite group is nilpotent if and only if it is 

a direct product of its Sylow subgroups. 

Proof: Finite p-groups are nilpotent, and hence so is any 

direct product of p-groups. 

Now suppose that G is a finite nilpotent group and let P 

be any Sylow subgroup of G. 

Let N = NG(P).  Suppose N < G. 

Then N < NG(N), by Theorem 4 (Corollary 1). 

Let x  NG(N) − N. 

Hence x−1Px  x−1Nx = N and so x−1Px is a Sylow 

subgroup of N, as is P. 

It follows that y−1x−1Pxy = P for some y  N and so 

xy  N. 

 

But y  N and x  N, a contradiction. 

It must be therefore be that N = G and so P  G. 

G is therefore the direct product of its Sylow subgroups. 

Corollary: A finite group is nilpotent if it has a unique 

Sylow subgroup for each of the primes dividing its order. 

Proof: Left as an exercise. 

 

§6.2. The Descending Central Series 
 If H, K are subgroups of a group G we define 

[H, K] = [h, k] | h  H, k  K. 

In particular, G = [G, G]. 
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 Recall that the higher commutators are defined by: 

[x1, x2, …, xk] = [[x1, x2, …, xk−1], xk]. The weight of the 

commutator [x1, x2, …, xk] is defined to be k. 

 Let 1(G) = G and k(G) = [x1, x2, …, xk | xi  G. 

The descending central series is: 

G = 1(G)  2(G)  … 

Note that 1(G) = G and k+1(G)  [k(G), G]. 

 

 It is not obvious that the inclusion works the other 

way round since k+1(G) is generated by all commutators 

of the form [x, y] where y  G and x is a commutator of 

weight k while [k(G), G] is generated by commutators of 

the form [x, y] where y  G and x is a product of 

commutators of weight k as well as inverses of these. 

 

Theorem 5: For all k, k+1(G) = [k(G), G]. 

Proof: Clearly k+1(G)  [k(G), G]. 

We have to prove that if x1, x2, …, xn  k(G) and y  G 

then [x1x2, … xn, y]  k+1(G). 

 Now we have the identity: 

[xy, z] = [x, z][x, z, y][y, z] 

So we can prove by induction on n that [x1x2, … xn, y] is 

a product of commutators of weight k + 1 and hence lies 

in k+1(G). 
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§6.3. Nilpotent Groups of Class 2 
 Nilpotent groups of class 2 have many properties in 

common with abelian groups. In an abelian group we have 

(xy)n = xnyn for all x, y. If the group has class 2 there’s a 

similar, but slightly more complicated result. 

 

Theorem 6: If G is nilpotent of class 2 then 

(xy)n = xnyn[y, x]n(n−1)/2. 

Proof: We prove this by induction on n. 

For n = 1 it is obvious. 

Suppose it’s true for n. 

Then (xy)n+1 = (xy)n(xy) = xnyn[y, x]1n(n−1)/2xy. 

Since [y, x]  Z(G) we can write this as xnynxy[y, x]n(n−1)/2. 

Now yx = xy[y, x] so that each time we bring an x to the 

left, past a y, we introduce a factor of [y, x]. These factors 

can be moved together with all the others, at the end of 

the expression. 

 

Hence ynx = xyn[y, x]n and so 

(xy)n+1 = xn+1yn+1[y, x]1/2 n(n−1) + n 

            = xn+1yn+1[y, x]1/2n(n+1). 

 So it’s true for all n. 

 

Theorem 7: In a nilpotent group of class 2 conjugates 

commute with one another. 

Proof: Let x, y  G. Since x−1yx = y[y, x] and 

[y, x]  Z(G), x−1yx commutes with y. 
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Theorem 8: If G is nilpotent of class 2 then 

(G) = {g  G | gn = 1 for some n > 0} 

is a normal subgroup of G. 

Proof: Let x, y  (G). Then xm = yn = 1 for some m, n. 

Since [y, x] = y−1 (x−1yx) it follows that 

[y, x]n = y−n (x−1yx)n = y−n x−1ynx = 1. 

Hence (xy)2mn = x2mn y2mn [y, x]mn(2mn+1) = 1. 

The normality is obvious. 

 

§6.4. Verbally Abelian Groups 
A group G is verbally abelian if there exists a 

word W(x, y) in two variables such that (G, ) is an 

abelian group under the operation x  y = W(x, y). 

 When a group is verbally abelian we have two 

group structures on the same set. Suppose G is the original 

group and G is the abelian group on the set G. Then 

subgroups of G are subgroups of G. The order of 

elements is the same in both groups and any 

automorphism of G is automatically an automorphism of 

G. 

 

Theorem 9:  Suppose G is a nilpotent group of class 2 

and n is an odd integer such that gn = 1 for all g  G. 

Then G is verbally abelian. 

Proof: Let G be nilpotent of class 2 and suppose that n is 

odd and gn = 1 for all g  G. 
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It is easily checked that for all k, (G, ) is a group under 

the operation x  y = xy[x, y]k. (This is left as a routine 

exercise.) 

Suppose k = 
n − 1

2
 . 

Then x  y = xy[x, y]k and y  x = yx[y, x]k. 

Since yx = xy[y, x], we have y  x = xy[y, x]k+1 

                                                       = xy[x, y]−k−1. 

But 1 = [x, y]n = [x, y]2k+1 so [y, x]k = [x, y]−k−1. 

Hence (G, ) is abelian. 
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EXERCISES FOR CHAPTER 6 
 

Exercise 1: For each of the following statements 

determine whether it is true or false. 

(1) Abelian groups are nilpotent. 

(2) Every nilpotent group is soluble. 

(3) Every metacyclic group is nilpotent. 

(4) If G  Z(G) and G  S5 then (xy)16 = x16y16 for all 

x, y  G. 

(5) If G is nilpotent of class 2 then (xy)n = xnyn for all 

x, y  G. 

(6) If G is nilpotent then it is a direct product of p-groups. 

(7) Dihedral groups of order 4k where k is odd, are 

verbally abelian. 

(8) There are some nilpotent groups of class 2 for which 

x • y = xy[y, x]13 is not a group word. 

 

Exercise 2: Prove that all groups of order 6125 are 

nilpotent. 

 

Exercise 3: Prove that if G is a nilpotent group of class 2 

and a binary operation • is defined by: 

x • y = xy[x, y]k for some integer k 

then (G, •) is a group. 
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SOLUTIONS FOR CHAPTER 6 
 

Exercise 1: 

(1) TRUE 

(2) TRUE 

(3) FALSE: S3 is metacyclic but not nilpotent] 

(4) TRUE: (xy)16 = x16y16[y, x]16.15/2 = x16y16[y, x]120. 

If G  S5 then [y, x]120 = 1. 

(5) FALSE: D8 is nilpotent of class 2. 

However (xy)2 = x2y2[y, x]. 

[Groups where (xy)2 = x2y2 must be abelian.] 

(6) FALSE: This is only true for finite nilpotent groups. 

A, B | B−1AB = A−1 is nilpotent of class 2 but has no 

Sylow subgroups. 

(7) TRUE: G  A, B | A2k, B2, B−1AB. 

G = A2 which has odd order k. Then by Theorem 9, G 

is verbally abelian. 

(8) FALSE: (G, •) is always a group. The restrictions in 

Theorem 9 are only needed to make (G, •) abelian. 

 

Exercise 2: 6125 = 53.72 

The number of Sylow 5-subgroups is  1(mod 5) and 

divides 49, and so must be 1. 

The number of Sylow 7-subgroups is  1(mod 7) and 

divides 125, and so must be 1. 

Hence a group, G, of order 6125 must have unique Sylow 

5-subgroup, H, and a unique Sylow 7-subgroup, K. 
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These must be normal in G and so, by the corollary to 

Theorem 4, G is nilpotent. 

 

Exercise 3: 

Associativity: (x • y) • z = xy[x, y]k z [xy[x, y]k, z]k 

                                         = xyz [x, y]k ([x, z][y, z])k 

                                         = xyz [x, y]k [x, z]k [y, z]k 

                                         = x • (y • z). 

Identity: x • 1 = x1[x, 1]k = x for all x. 

Inverse: x • x−1 = xx−1[x, x−1] = 1. 
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