

6. NILPOTENT GROUPS

§6.1. The Ascending Central Series

The **centre** of a group G is

$$Z(G) = \{z \in G \mid zg = gz \text{ for all } g \in G\}.$$

We can use this to define a whole series of ‘centres’, called the **ascending central series**.

We define $Z_i(G)$ inductively by defining

$$Z_0(G) = 1 \text{ and}$$

$$Z_{i+1}(G)/Z_i(G) = Z(G/Z_i(G)).$$

So $Z_1(G) = Z(G)$ and $Z_{i+1}(G) = \{z \in G \mid [z, g] \in Z_i(G)\}$ for all $i \geq 1$.

The **ascending central series** is thus:

$$1 \leq Z(G) \leq Z_2(G) \leq Z_3(G) \leq \dots$$

We define G to be **nilpotent** if $Z_n(G) = G$ for some n , and the smallest such n is called the **nilpotency class**, or just the **class**. The trivial group is the only nilpotent group of class 0 and non-trivial abelian groups are nilpotent groups of class 1.

Example 1: The dihedral group of order 8 is nilpotent of class 2.

If $G = \langle A, B \mid A^4, B^2, [A, B] = A^2 \rangle$ we have $Z(G) = \langle A^2 \rangle$ and $Z_2(G) = G$.

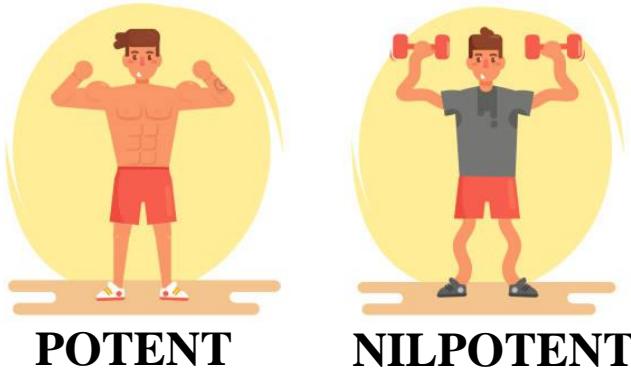
Example 2: Generalizing example 1, if $G = D_{2^{n+1}} = \langle A^{2^n}, B^2, [A, B] = A^2 \rangle$ is the dihedral group of order 2^{n+1} then for $r < n$, $Z_r(G) = \langle A^{2^{n-r}} \rangle$ and $Z_n(G) = G$. Hence G is nilpotent of class n .

Theorem 1: Finite p -groups are nilpotent.

Proof: $Z_{r+1}(G)/Z_r(G) = Z(G/Z_r(G))$.

Since the centre of a non-trivial p -group is non-trivial, $Z_r(G) < Z_{r+1}(G)$ unless $Z_r(G) = G$.

Theorem 2: Subgroups and quotient groups of a nilpotent group of class n are nilpotent and their nilpotency class is at most n .



Proof:

Suppose $Z_n(G) = G$ and let $H \leq G$.

For each r , $Z_r(H) \geq Z_r(G) \cap H$ and so $Z_n(H) = H$.

Suppose now that H is normal in G .

For each r , $Z_r(G)H/H \leq Z_r(G/H)$ and so $Z_n(G/H) = G/H$.

Theorem 3:

Let G be a nilpotent group of class n and let $H \leq G$.

Let $H_0 \leq H_1 \leq H_2 \leq \dots$ be defined by:

$$H_0 = H,$$

$$H_{i+1} = N_G(H_i) \text{ for all } i \geq 0.$$

Then $H_n = G$.

Proof: $1 = Z_0(G) \leq H_0$.

We prove by induction on r that $H_r \leq Z_r(G)$.

For $z \in Z_{r+1}(G)$ and $h \in H_r$, $[z, h] \in Z_r(G)$ and so

So $z^{-1}h^{-1}z \in H_r Z_r(G) \leq H_r$.

Hence $z \in N_G(H_r) = H_{r+1}$. Thus $Z_{r+1}(G) \leq H_{r+1}$.

Corollary 1: If G is nilpotent and $H < G$ then $H < N_G(H)$.

Proof: If $H = N_G(H)$ then H_r , as defined above, will be equal to H for all r .

Corollary 2: Every maximal subgroup of a nilpotent group is normal.

Corollary 3: Every maximal subgroup of a nilpotent group has finite, prime index.

Proof: If M is a maximal subgroup then G/M has no proper subgroups and so is isomorphic to C_p for some prime p .

These two corollaries generalise what we have proved for p -groups.

Theorem 4: A finite group is nilpotent if and only if it is a direct product of its Sylow subgroups.

Proof: Finite p -groups are nilpotent, and hence so is any direct product of p -groups.

Now suppose that G is a finite nilpotent group and let P be any Sylow subgroup of G .

Let $N = N_G(P)$. Suppose $N < G$.

Then $N < N_G(N)$, by Theorem 4 (Corollary 1).

Let $x \in N_G(N) - N$.

Hence $x^{-1}Px \leq x^{-1}Nx = N$ and so $x^{-1}Px$ is a Sylow subgroup of N , as is P .

It follows that $y^{-1}x^{-1}Pxy = P$ for some $y \in N$ and so $xy \in N$.

But $y \in N$ and $x \notin N$, a contradiction.

It must be therefore be that $N = G$ and so $P \trianglelefteq G$.

G is therefore the direct product of its Sylow subgroups.

Corollary: A finite group is nilpotent if it has a unique Sylow subgroup for each of the primes dividing its order.

Proof: Left as an exercise.

§6.2. The Descending Central Series

If H, K are subgroups of a group G we define

$$[H, K] = \langle [h, k] \mid h \in H, k \in K \rangle.$$

In particular, $G' = [G, G]$.

Recall that the higher commutators are defined by:
 $[x_1, x_2, \dots, x_k] = [[x_1, x_2, \dots, x_{k-1}], x_k]$. The **weight** of the commutator $[x_1, x_2, \dots, x_k]$ is defined to be k .

Let $\Gamma_1(G) = G$ and $\Gamma_k(G) = \langle [x_1, x_2, \dots, x_k] \mid x_i \in G \rangle$. The **descending central series** is:

$$G = \Gamma_1(G) \geq \Gamma_2(G) \geq \dots$$

Note that $\Gamma_1(G) = G'$ and $\Gamma_{k+1}(G) \leq [\Gamma_k(G), G]$.

It is not obvious that the inclusion works the other way round since $\Gamma_{k+1}(G)$ is generated by all commutators of the form $[x, y]$ where $y \in G$ and x is a commutator of weight k while $[\Gamma_k(G), G]$ is generated by commutators of the form $[x, y]$ where $y \in G$ and x is a *product* of commutators of weight k as well as inverses of these.

Theorem 5: For all k , $\Gamma_{k+1}(G) = [\Gamma_k(G), G]$.

Proof: Clearly $\Gamma_{k+1}(G) \leq [\Gamma_k(G), G]$.

We have to prove that if $x_1, x_2, \dots, x_n \in \Gamma_k(G)$ and $y \in G$ then $[x_1 x_2, \dots, x_n, y] \in \Gamma_{k+1}(G)$.

Now we have the identity:

$$[xy, z] = [x, z][x, y][y, z]$$

So we can prove by induction on n that $[x_1 x_2, \dots, x_n, y]$ is a product of commutators of weight $k + 1$ and hence lies in $\Gamma_{k+1}(G)$.

§6.3. Nilpotent Groups of Class 2

Nilpotent groups of class 2 have many properties in common with abelian groups. In an abelian group we have $(xy)^n = x^n y^n$ for all x, y . If the group has class 2 there's a similar, but slightly more complicated result.

Theorem 6: If G is nilpotent of class 2 then

$$(xy)^n = x^n y^n [y, x]^{n(n-1)/2}.$$

Proof: We prove this by induction on n .

For $n = 1$ it is obvious.

Suppose it's true for n .

Then $(xy)^{n+1} = (xy)^n(xy) = x^n y^n [y, x]^{1n(n-1)/2} xy$.

Since $[y, x] \in Z(G)$ we can write this as $x^n y^n xy [y, x]^{n(n-1)/2}$.

Now $yx = xy[y, x]$ so that each time we bring an x to the left, past a y , we introduce a factor of $[y, x]$. These factors can be moved together with all the others, at the end of the expression.

Hence $y^n x = xy^n [y, x]^n$ and so

$$\begin{aligned} (xy)^{n+1} &= x^{n+1} y^{n+1} [y, x]^{1/2 n(n-1) + n} \\ &= x^{n+1} y^{n+1} [y, x]^{1/2 n(n+1)}. \end{aligned}$$

So it's true for all n .

Theorem 7: In a nilpotent group of class 2 conjugates commute with one another.

Proof: Let $x, y \in G$. Since $x^{-1} y x = y [y, x]$ and $[y, x] \in Z(G)$, $x^{-1} y x$ commutes with y .

Theorem 8: If G is nilpotent of class 2 then

$$\tau(G) = \{g \in G \mid g^n = 1 \text{ for some } n > 0\}$$

is a normal subgroup of G .

Proof: Let $x, y \in \tau(G)$. Then $x^m = y^n = 1$ for some m, n .

Since $[y, x] = y^{-1} (x^{-1}yx)$ it follows that

$$[y, x]^n = y^{-n} (x^{-1}yx)^n = y^{-n} x^{-1} y^n x = 1.$$

$$\text{Hence } (xy)^{2mn} = x^{2mn} y^{2mn} [y, x]^{mn(2mn+1)} = 1.$$

The normality is obvious.

§6.4. Verbally Abelian Groups

A group G is **verbally abelian** if there exists a word $W(x, y)$ in two variables such that $(G, *)$ is an abelian group under the operation $x * y = W(x, y)$.

When a group is verbally abelian we have two group structures on the same set. Suppose G is the original group and G_* is the abelian group on the set G . Then subgroups of G are subgroups of G_* . The order of elements is the same in both groups and any automorphism of G is automatically an automorphism of G_* .

Theorem 9: Suppose G is a nilpotent group of class 2 and n is an odd integer such that $g^n = 1$ for all $g \in G'$. Then G is verbally abelian.

Proof: Let G be nilpotent of class 2 and suppose that n is odd and $g^n = 1$ for all $g \in G'$.

It is easily checked that for all k , $(G, *)$ is a group under the operation $x * y = xy[x, y]^k$. (This is left as a routine exercise.)

Suppose $k = \frac{n-1}{2}$.

Then $x * y = xy[x, y]^k$ and $y * x = yx[y, x]^k$.

Since $yx = xy[y, x]$, we have $y * x = xy[y, x]^{k+1}$
 $= xy[x, y]^{-k-1}$.

But $1 = [x, y]^n = [x, y]^{2k+1}$ so $[y, x]^k = [x, y]^{-k-1}$.

Hence $(G, *)$ is abelian.

EXERCISES FOR CHAPTER 6

Exercise 1: For each of the following statements determine whether it is true or false.

- (1) Abelian groups are nilpotent.
- (2) Every nilpotent group is soluble.
- (3) Every metacyclic group is nilpotent.
- (4) If $G' \leq Z(G)$ and $G' \cong S_5$ then $(xy)^{16} = x^{16}y^{16}$ for all $x, y \in G$.
- (5) If G is nilpotent of class 2 then $(xy)^n = x^n y^n$ for all $x, y \in G$.
- (6) If G is nilpotent then it is a direct product of p -groups.
- (7) Dihedral groups of order $4k$ where k is odd, are verbally abelian.
- (8) There are some nilpotent groups of class 2 for which $x \bullet y = xy[y, x]^{13}$ is not a group word.

Exercise 2: Prove that all groups of order 6125 are nilpotent.

Exercise 3: Prove that if G is a nilpotent group of class 2 and a binary operation \bullet is defined by:

$x \bullet y = xy[x, y]^k$ for some integer k
then (G, \bullet) is a group.

SOLUTIONS FOR CHAPTER 6

Exercise 1:

(1) TRUE

(2) TRUE

(3) FALSE: S_3 is metacyclic but not nilpotent]

(4) TRUE: $(xy)^{16} = x^{16}y^{16}[y, x]^{16 \cdot 15/2} = x^{16}y^{16}[y, x]^{120}$.

If $G' \cong S_5$ then $[y, x]^{120} = 1$.

(5) FALSE: D_8 is nilpotent of class 2.

However $(xy)^2 = x^2y^2[y, x]$.

[Groups where $(xy)^2 = x^2y^2$ must be abelian.]

(6) FALSE: This is only true for *finite* nilpotent groups.

$\langle A, B \mid B^{-1}AB = A^{-1} \rangle$ is nilpotent of class 2 but has no Sylow subgroups.

(7) TRUE: $G \cong \langle A, B \mid A^{2k}, B^2, B^{-1}AB \rangle$.

$G' = \langle A^2 \rangle$ which has odd order k . Then by Theorem 9, G is verbally abelian.

(8) FALSE: (G, \bullet) is always a group. The restrictions in Theorem 9 are only needed to make (G, \bullet) abelian.

Exercise 2: $6125 = 5^3 \cdot 7^2$

The number of Sylow 5-subgroups is $\equiv 1 \pmod{5}$ and divides 49, and so must be 1.

The number of Sylow 7-subgroups is $\equiv 1 \pmod{7}$ and divides 125, and so must be 1.

Hence a group, G , of order 6125 must have unique Sylow 5-subgroup, H , and a unique Sylow 7-subgroup, K .

These must be normal in G and so, by the corollary to Theorem 4, G is nilpotent.

Exercise 3:

$$\begin{aligned}\text{Associativity: } (x \bullet y) \bullet z &= xy[x, y]^k z [xy[x, y]^k, z]^k \\ &= xyz [x, y]^k ([x, z][y, z])^k \\ &= xyz [x, y]^k [x, z]^k [y, z]^k \\ &= x \bullet (y \bullet z).\end{aligned}$$

$$\text{Identity: } x \bullet 1 = x1[x, 1]^k = x \text{ for all } x.$$

$$\text{Inverse: } x \bullet x^{-1} = xx^{-1}[x, x^{-1}] = 1.$$

