6. NILPOTENT GROUPS
86.1. The Ascending Central Series

The centre of agroup G is

Z(G)={ze G|zg=gzforall g € G}.
We can use this to define a whole series of ‘centres’,
called the ascending central series.

W define Zi(G) inductively by defining
Zo(G)=1and
Zi1(G)/Zi(G) = Z(G/Zi(G)).
So Z1(G) = Z(G) and Zi+1(G) = {z € G | [z, 9] € Z(G)}
foralli>1.

The ascending central series is thus:
1<Z(G)<Zy(G)<Z5(G) < ...

We define G to be nilpotent if Z,(G) = G for some
n, and the smallest such n is called the nilpotency class,
or just the class. The trivial group is the only nilpotent
group of class 0 and non-trivial abelian groups are
nilpotent groups of class 1.

Example 1: The dihedral group of order 8 is nilpotent of
class 2.

If G = (A, B| A% B?, [A, B] = A% we have Z(G) = (A?)
and Z,(G) = G.
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Example 2: Generalizing example 1,

if G = Dyn+1 = (A2", B2 [A, B] = A%

is the dihedral group of order 2"** then for r < n,
Z(G) = (A" "y and Z,(G) = G.

Hence G is nilpotent of class n.

Theorem 1: Finite p-groups are nilpotent.

Proof: Z+1(G)/Z(G) = Z(G/Z(G)).

Since the centre of a non-trivial p-group is non-trivial,
Z(G) < Zr+1(G) unless Z,(G) = G.

Theorem 2: Subgroups and quotient groups of a nilpotent
group of class n are nilpotent and their nilpotency class is
at most n.
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Proof:
Suppose Z,(G) =G and let H < G.
For eachr, Z,(H) > Z,(G) ~ H and so Z,(H) = H.
Suppose now that H is normal in G.
For each r, Z(G)H/H < Z(G/H) and so Z,(G/H) = G/H.
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Theorem 3:
Let G be a nilpotent group of class nand let H < G.
Let Ho < H; <H, < ... be defined by:

Ho = H,

Hi.1 = Ng(Hj) for all i > 0.
Then H, =G.
Proof: 1 = Zy(G) < Ho.
We prove by induction on r that H, < Z(G).
Forz € Z+1(G) and h € Hy, [z, h] € Z(G) and so
So z*h'z € H.Z(G) < H..
Hence z € Ng(Hy) = Hrs1. Thus Zr41(G) < Hpsg.

Corollary 1: If G is nilpotent and H < G then H < Ng(H).
Proof: If H = Ng(H) then H,, as defined above, will be
equal to H for all r.

Corollary 2: Every maximal subgroup of a nilpotent
group is normal.

Corollary 3: Every maximal subgroup of a nilpotent
group has finite, prime index.

Proof: If M is a maximal subgroup then G/M has no
proper subgroups and so is isomorphic to C, for some
prime p.

These two corollaries generalise what we have proved for
p-groups.
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Theorem 4: A finite group is nilpotent if and only if it is
a direct product of its Sylow subgroups.

Proof: Finite p-groups are nilpotent, and hence so is any
direct product of p-groups.

Now suppose that G is a finite nilpotent group and let P
be any Sylow subgroup of G.

Let N = Ng(P). Suppose N < G.

Then N < Ng(N), by Theorem 4 (Corollary 1).

Let x € Ng(N) — N.

Hence x'Px < x!Nx = N and so x'Px is a Sylow
subgroup of N, as is P.

It follows that y™x"*Pxy = P for some y € N and so

Xy € N.

Buty € Nand x ¢ N, a contradiction.

It must be therefore be that N =G and so P < G.

G is therefore the direct product of its Sylow subgroups.
Corollary: A finite group is nilpotent if it has a unique
Sylow subgroup for each of the primes dividing its order.
Proof: Left as an exercise.

§86.2. The Descending Central Series
If H, K are subgroups of a group G we define
[H, K] =([h,k] | h € H, k € K).
In particular, G’ = [G, G].
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Recall that the higher commutators are defined by:
[X1, X2, ..., Xk] = [[X1, X2, ..., Xk-1], Xk]. The weight of the
commutator [xi, X, ..., Xg] is defined to be k.
LetI'(G) = G and I'k(G) = {[X1, X2, ..., Xk | Xi € G).
The descending central series is:
G=T1(G) >TI%(G)>...
Note that I'1(G) = G’ and I'v+1(G) < [T'k(G), G].

It is not obvious that the inclusion works the other
way round since I'k+1(G) is generated by all commutators
of the form [x, y] where y € G and x is a commutator of
weight k while [T'k(G), G] is generated by commutators of

the form [x, y] where y € G and x is a product of
commutators of weight k as well as inverses of these.

Theorem 5: For all k, I'k+1(G) = [T'k(G), G].
Proof: Clearly I'k+1(G) < [T'k(G), G].
We have to prove that if X1, X2, ..., Xn € ['k(G) and y € G
then [Xi1Xo, ... Xn, Y] € Tk+1(G).

Now we have the identity:

[xy, z] = [x, zI[x, z, yIly. 7]

So we can prove by induction on n that [XiXo, ... Xn, Y] IS
a product of commutators of weight k + 1 and hence lies
in Ty1(G).
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§6.3. Nilpotent Groups of Class 2

Nilpotent groups of class 2 have many properties in
common with abelian groups. In an abelian group we have
(xy)" = x"y" for all x, y. If the group has class 2 there’s a
similar, but slightly more complicated result.

Theorem 6: If G is nilpotent of class 2 then

(Xy)n = Xnyn[y’ X]n(n—l)lzl
Proof: We prove this by induction on n.
Forn=1itis obvious.
Suppose it’s true for n.
Then (xy)™* = (xy)"(xy) = x"y"[y, x]*""12xy.
Since [y, X] € Z(G) we can write this as x"y"xy[y, x]""-272,
Now yx = xy[y, x] so that each time we bring an x to the
left, past a y, we introduce a factor of [y, x]. These factors
can be moved together with all the others, at the end of
the expression.

Hence y"x = xy"[y, x]" and so
(Xy)n+1 - Xn+1yn+1[y X]1/2 n(n-1) +n

— Xn+1yn+1[y X]1/2n(n+1).
So it’s true for all n.

Theorem 7: In a nilpotent group of class 2 conjugates
commute with one another.

Proof: Let x, y € G. Since x'yx = y[y, x] and

[y, X] € Z(G), x"tyx commutes with y.
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Theorem 8: If G is nilpotent of class 2 then
1(G) ={g € G| g" =1 for some n > 0}
Is a normal subgroup of G.
Proof: Letx,y € t©(G). Then x™ =y" = 1 for some m, n.
Since [y, x] = y* (x"tyx) it follows that
[y, xI"=y" (xyx)" =y " xly"x = 1.
Hence (Xy)Zmn = x2mn y2mn [y’ X]mn(2mn+1) =1.
The normality is obvious.

86.4. Verbally Abelian Groups

A group G is verbally abelian if there exists a
word W(x, y) in two variables such that (G, *) is an
abelian group under the operation x * y = W(X, y).

When a group is verbally abelian we have two
group structures on the same set. Suppose G is the original
group and G- is the abelian group on the set G. Then
subgroups of G are subgroups of G.. The order of
elements is the same in both groups and any
automorphism of G is automatically an automorphism of
G-

Theorem 9: Suppose G is a nilpotent group of class 2
and n is an odd integer such that g" = 1 forall g € G'.
Then G is verbally abelian.

Proof: Let G be nilpotent of class 2 and suppose that n is
oddandg"=1forallg € G'.
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It is easily checked that for all k, (G, *) is a group under
the operation x * y = xy[x, y]*. (This is left as a routine
exercise.)

n—-1
Suppose k = ——.

Then x =y = xy[x, y]* and y * x = yx[y, x]*.
Since yx = xy[y, x], we have y * x = xy[y, x]<**

= xy[x, yI**.
But 1 =[x y]" =[x, yP***so [y, x]“ = [x, y]**.
Hence (G, *) is abelian.

100



EXERCISES FOR CHAPTER 6

Exercise 1: For each of the following statements
determine whether it is true or false.

(1) Abelian groups are nilpotent.

(2) Every nilpotent group is soluble.

(3) Every metacyclic group is nilpotent.

(4) If G’ < Z(G) and G’ = Ss then (xy)® = x*®y*6 for all
X,y € G.

(5) If G is nilpotent of class 2 then (xy)" = x"y" for all
X,y € G.

(6) If G is nilpotent then it is a direct product of p-groups.
(7) Dihedral groups of order 4k where k is odd, are
verbally abelian.

(8) There are some nilpotent groups of class 2 for which
x o y = xy[y, x]* is not a group word.

Exercise 2: Prove that all groups of order 6125 are
nilpotent.

Exercise 3: Prove that if G is a nilpotent group of class 2
and a binary operation e is defined by:

X o y = xy[x, y]* for some integer k
then (G, e) is a group.
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SOLUTIONS FOR CHAPTER 6

Exercise 1:

(1) TRUE

(2) TRUE

(3) FALSE: S; is metacyclic but not nilpotent]

(4) TRUE: (xy)'6 = x6y16[y, X]16.15/2 = x16y16y, x]120,

If G’ = S5 then [y, x]*?° = 1.

(5) FALSE: Dg is nilpotent of class 2.

However (xy)? = x?y?[y, x].

[Groups where (xy)? = xy? must be abelian.]

(6) FALSE: This is only true for finite nilpotent groups.
(A, B | BTAB = A1) is nilpotent of class 2 but has no
Sylow subgroups.

(7) TRUE: G = (A, B| A% B? B!AB).

G’ = (A?) which has odd order k. Then by Theorem 9, G
is verbally abelian.

(8) FALSE: (G, o) is always a group. The restrictions in
Theorem 9 are only needed to make (G, ) abelian.

Exercise 2: 6125 = 53.72

The number of Sylow 5-subgroups is
divides 49, and so must be 1.

The number of Sylow 7-subgroups is = 1(mod 7) and
divides 125, and so must be 1.

Hence a group, G, of order 6125 must have unique Sylow
5-subgroup, H, and a unique Sylow 7-subgroup, K.

1(mod 5) and
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These must be normal in G and so, by the corollary to
Theorem 4, G is nilpotent.

Exercise 3:

Associativity: (x e y) e z = xy[x, yI* z [xy[x, y]¥, ]
= xyz [x, yI* (Ix, Z][y, Z2])*
= xyz [x, yI* [x, 21 [y, Z]*
=Xeo(ye2z).

Identity: x o 1 = x1[x, 1]% = x for all x.

Inverse: X e x 1 = xx[x, x 1] = 1.
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